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Equations of a plane boundary layer of a viscous incompressible fluid with couple stresses, 
asymmetric stress tensor and with the inner inertia of the particles taken into account, 

are considered. Numerous variants of the plane boundary layer equations are investigated 
and their invariant group theoretic properties obtained. Boundary layer equations are dis- 

cussed in connection with two problems, one concerned with the flow around a flat plate 
and the other with a totally submerged stream. General problems of the theory of fluids 
with couple stresses were investigated in [l and 21. 

1. General system of equations of motion of a viscous, incompressible fluid with couple 
stresses, has t;yO dv i 

. = -=-- 
’ dt p Vp+2vV.(Vv)d+v,V x [2a,-v XV] 

do, (W 
13=2,5(V Xv-2~)~~V(V’~)+~dV’(V~)d+2c,V.(V~)o 

Here p denotes the bulk density, p is the pressure, I is a scalar constant of dimen- 
sion equal to that of the moment of inertia of unit mass, v is the velocity vector of a 
point, OJ is the vector describing the mean angular velocity of rotation of the particles 
of which a point of the continuum is composed, v is the kinematic Newtonian viscosity, 

vy is the kinematic rotational viscosity, CO, Cd and flare the coefficients of the couple 

stress viscosity. d (...) / dt denotes the total differential with respect to time, V is the 
three-dimensional grad, (VV)~ and (Vo)d are the symmetric parts of the corresponding 
dyads, finally, (Vv)a and (Vao)a are the antisymmetric dyads. 

For the plane case Eqs. (1.1) become, in the dimensionless form, 

au, avu 
3F+ ay -_=o 

R 
Vl v’ V1 VP 

=- co + =d -- 
v, E- I, II,=-;;-, R,=-p T=- I (f-3) 

where V and 1 denote the characteristic velocity and length, respectively. 
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In the curvilinear [3] orthogonal coordinates q1 and q, with the Lame coefficients 4 
and 4.. Eqs. (1.2) become 

au1 Vl au1 va av1 ar+ Faa,+ h aq, +h$ ah1 ah -- ( -= v’zq-v’aql 1 (i .4) 

aas v1 aos 
at+ hl aql 

va afh 6h au1 0a au2 vlm8 ah c?oa ahI -- -- -- -- __ --- 
+ ha aqs + 2hl aq, + uca aqs + 2 hlha aql + 2 hlb aqs - 

4E 2E 1 

[ 

a (havz) =-- -- 
R, @+ R, h,h, 

-_cp]+&[&g?$+_p+ 
aql 1 a ww h3 +hlhaaql 1 a ~hlm aas a&&F-- a9 1 

FOilOWing pi We DUt (1.5) 

Ql’X, qa=J- vB, vl=ux, &,~=a-@, h=i+r+r h,=i v2=- 

Let us now insert (1.5) into (1.4) and put R-m. As the result, we obtain four possible 
types of the boundary layer equations depending on the relations between R, R,, RC 
and E . 

1. If R, R,, E and RC / R .are of the same order, we obtain 

s+u;<+v $---$~+(v+vP)$+2v, 2 

ap G=o, ;;+;<=o, u = vx, v=vv, o=oI (i.6) 
aa aa aa 4% 2~5 au 7 a20 
~+"~+va~=-~~o-~aaTj+-i_ayi 

in the dimensional variables. Boundary layer equations contain, in this case, the terms 
characterizing the asymmetry of the stress dyad. the couple stresses and the inertia of the 
rotating particles. 

‘2) If R, R, and E are of the same order, and ER 4 R,, we have the system (1.6) in 
which the last equation is replaced by 
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(1.7) 

This case corresponds to the absence of the couple stresses in the fluid. 
3) If R, R, and VRi? are of the same order provided that E > R, we obtain (1.6). 

the last equation of which has the form 
a%0 

O=-4v,o-2v, ay a”+ryq (1.8) 

This corresponds to the case when the inertia of the rotating particles can be neglected. 
4) If R, R,,and R, / E.are of the same order, and E 4 R, then the last equation of 

(1.6) is replaced by ~+u+++~~ (1.9) 

which corresponds to the case when the couple stress is dominant during the rotation of 
the particles. 

2. Following [4 - 61 we shall investigate the invariant group theoretic properties of 
the equations of the boundary layer of the fluid with couple stresses, when the motion is 

steady. 

A) Let us consider the first type of the boundary layer equations. System (1.6) in its 
normal form is given by 1 

Qu- -- uu,+va+ 
v+ vr ( ;” -2v&3 , uy=a, c~~=p 

) 

4v 
-0, vtl=-ux, P”=+~+Vp+fo+~a 

) 

(Sl) 

I%- 

Here and in the following the subscripts z and y following the quantities u, V, p, 0, 

a and j3 denote the differentiation with respect to these variables. 

Quantities z, y, u, v, o, p, cc and ji are regarded as coordinates defining a point in 
the space Ee. ‘Let us obtain a group G of transformations of Es with the following infini- 
tesimal operator a 

X=&C,, + 4v. ay “+~,t+E.~+5=~+e,~+g~+s,~ 

where f,, &, , . . . are functions of z, y, p, u; c, a, $ and o , respectively. Let EZ,O 

be the continuation of Es with respect to all the derivatives in u, v, o, p, a and 6 and 

let X+ be the continuation of X. 

System (8,) will admit the group G, if and only if the conditions [4 - S] 

C 

1 
X+ all-A 

v+ vr ( 
uu,+va+ 1 

P pr 
-2v,p =o )I 

x+ (U” - a) = 0, x+(+-+)=0, x+p,=o, x+(v,+ I+.)=0 (2.1) 

x+ WV - (Zuo, + Zvp + 4vro + 2v,a) r+]= 0. 

hold. The system of equations (2.1) on the manifold (S,) decomposes, yielding a system 
of defining equations the general solution of which has the form 

E, = ez -I- br, Es,.= 2ap + b,, 6, = an, &W= ao (2.2) 

E, = aa, E, = afJ, Sv = bs’P (z), E, = b,ucp’ (z), ‘P’ (2) = dq / dt 

where cp (I) is an arbitrary function of z. 

Thus the system (8,) admits the infinite group G. Since &, Eyr &,, E,, &, and &,, 
are independent of a and $, instead of considering the space Ea we can consider ‘only 
the space E,, in which the Lie algebra of the group G is generated by the following abbre- 
viated basis operators a a 

X1=x?& +u,u+2p ap “+o& XV-&, x8=-$ (2.3) 
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together with the set of operators of the form 

X‘=W)++ W’(I) & (2.41 

It can be shown that the subalgebra of the operators (2.4) will be the ideal of the com- 
plete Lie algebra of the admissible system (S,). 

To find the substantially different invariant solutions of (8,); we shall construct an -. _ 
optimal system of operators (2.3) generating the algebra of residues on the ideal.of (2.4). 

Computations [4 and 51 yield the following one-parameter subgroups. 
Subgroup Hi with the operator X1. This subgroup has the associated set of 

the independent invariants 

J1 = ic / x, J, = v,, I, F p / zs, J, = o / 2, Jr = & =I y 

Inserting the values of,u,,ujpfand o obtained from the above invariants into (Ss), we 
obtain another system of equations which we shall call (S, / Hs) 

P(V +~r)Jl”= pJ,’ + pJ,J,’ + 25, - 2pv,J,‘, Js’ = 0 

J, + J; = 0, yJ,” = IJ,J, + IJ,J,’ + 4vv,J, + Zv,J,’ 

Here and in the following the prime will denote differentiation with respect to k - 
Subgroup HP with the operator Xs. The complete set of invariants has the 

form 
Jl = u, Js = v, I, = p, J, = co, Js = & = y 

The corresponding system (S, / Hs) can be written in the form (v + v,)Jl” = J,Jl’ - 

- 2v rJ,' J,’ = 0, Jz’ = 0 yJ,” = IJ,J,’ + 4v,J, + 2vtJs’ 

Subgroup Hs with the operator XII. The complete set of invariants consists 
of J1 = u, J, = v, Ja = ;, J, = 2, J,, - t = y 

Invariant solution cannot [4 and 51 be constructed on this subgroup. 

Subgroup H, with the operator X = a (...) / az + B (...) / op. Here we have 
the following independent invariants 

J, = u, J, = v, Ja = p - t, ;r, = 0, J, = E = y 

System (8, / H4 ) has the form 
p(v + v,)J,” = pJsJ,’ - 2py,J,‘, JB’ = 0 

J,’ = 0, yJ,” = IJ,J,’ + 4v,J, + 2v,J1’ 

Subgroup H, with the operator X4. Complete set of the independent invari- 

ants is given by J, r..x II, JI r..: v - uyq” / q’ , J8 - p, J, E 0, J, = t a t 

System (S,/H& is completely integrable and yields the following solution 

where 0 (z) is arbitrary, cr, I c and cs are constants of integration. 

It can be shown that the boundary 
layer equations (1.7) and (1.8) of 
the second and third type admit the 
same group G as Eq. (&). Therefore 
their solutions can be obtained from 

the systems (S, / HI) - (S, / H,), in 
which y and Z are assumed equal to 
zero. 

Table 1. 
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8) Let us now consider the fourth type of the boundary layer equations. The system 
(1.9) in its normal form is . _ 

1 
Qv=- 

v + v, ( uu,+va+ p LPI-2vrP), uy=a, oy=j3 w 
PU = 0, vu = - I.&, I$/ = Iv-’ wx + 4) 

In this case a general solution of the defining equations of the type (2.1) is obtained 
in the form 

E, = 02 + q, E” = (1 - a)!/ + b,cp (z), E = (30 - 2)u 

E, = (a - 1)~ + WP’ (z), &, = (6~ - 4)~ + b,, &_ = (4~ - 3) o + b,. 

The optimal system of the operators of the Lie algebra corresponding to the fourth 
type of the boundary layer equations is given in Table 1. 

We see that for the subgroups HI, Ha, HI and HIa the invariants are the same as those 
obtained for the first type of the boundary layer. Subgroups Ha and-Ifs have no invariant 
solutions.and!the remaining subgroups shall be discussed below. 

Subgroup a,. The complete set of independent invariants consists of 

J, = u, J, = v, Jt = p, J,=+o-E, J,=_Eey 

System of equations (S, / H,) has the form 

(v + v,)J,” = J,J,’ - 2vrJ,‘, J,’ = 0, J; = 0, yJ,” = ZJ, + rJ,J; 

S u b g I o u p H,. The corresponding complete set of the independent invariants is 

Jl = u, J, = v, J, = p - t, J, = o - z, Jr I k e y 

System (S, / H,) becomes 

p (v + v,)J;” = pJzJ1 + i - 2pv,J,‘, J,’ = 0 

Js’ = 0, yJ,” = ZJ1 + ZJiJ, 
S u b g r o u p Ha. The complete set of the independent invariants has the form 

J, = uy, J, = vy, II, = py’, J, = tog, J,= g= a 

and the corresponding system of equations (S, / Hs) is 

PJIJI’ - 2pJ,J, = 6p (v + v ,) J, - 3pvrJ,, Js = JI’ 
Js = 0, yJ, = ZJ,J,’ +\3ZJ;J, 

Subgroup H,. Here we have the following independent invariants : 
JI = u exp (2z)., J, = v exp (z), Jr = p exp (4r) 

J, = o exp (3s), 
System (Sa / HI) has the form 

J, = & = y exp (-2) 

p (v + v,)J,” = - 2pl;’ - p&J,J,’ + pJ,J,’ - 4J,, J,’ = 0 

iEJl - 2Jl + J, = 0, yJ,” = IJ,J,’ - 3IJ,J, - I&J,J, 
Putting J, = fp’ and J, = 9, we obtain 

(v + V&p” + NJ’ - (p(p” + 4Cl = - Zv,rp’, p =’ q exp (-41) 

yqf = I (2qJ’ - E# + EVN,’ - 3W9 
S u b g r o u p HI,. ,The complete set of the independent invariants is 

J1 = ut-l+am ., J, = mm, J, = pza(l-), J , = 0-lHm, J, = E = Yt-m 

The system (S, / H,,) becomes 

(v + v&p”’ + (i - m)cpcp” - (i--2m)f# - 2(i--2m)E, = - 2v&’ 

y$” = I (i--3m)(p’g - I (i - m)*‘, p = qp~*(~-~) 

S u b g r o u p H,. This subgroup has the following incepenaem inrariants : 
(2.5) 
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J, = u, J, = ut’$ Ja = p - h z.% J, = wt’is, Jr = & = y& 

and the system (Ss / &)‘has the form 

2p (v + v&p” + pcprp’ - i = - 4pv& 

2@” = 7 2ZErp’rp’ - Z@‘, p = Cl + In $8 

S u b group ffrs. The complete set of the independent invariants is 

Jl -‘I* = ut , Jt = vz’i*, Js = pa?, J, = o - In $8, J, = 6 I y/f8 

The system (S, / His) will have the form 

3P (v + v&p” - P’P” + ~P@(P” + 2e, = - 6pv&* 

*‘= Zrp’ + z (5 - 2)rp’lj’. p = C$/’ 

8. We shall now consider the problem of the flow of a viscous, incompressible fluid 
with couple stresses, around a plane semi-infinite plate. We shall assume that the follow- 
ing boundary conditions hold: u =.u = 0 when y = 0 (3.1) 

lim u (2, y) = U (2) = 9, lim ar (z, y) = 0 as y+oo 
At the rigid wall, a, may assume one of the following values: 

o = 0 when y = 0, w1 = - %v when y = 0 (3.2) 

Pressure p is obtained from [3] 

PX e - fjuu* = --n&z=+ (3.3) 

Conditions (3.1) - (3.3) hold only for the self-similar solution of (2.5) in which the 
following substitution should be made : 

m=(l-n)12, s=-.~12 
From(2.5) we obtain 

2 (v + v ,)cp”’ + ( n + i)cpcp’ + 2n (9 - 9”) = - 4v & 

2*” + Z (a + i)*’ - Z (an - i)rp’q = 0 

Boundary conditions (3.1) will become 

q (0) = 9 (0) = 0, cp’ (00) = c, 9 (PO) = 0 

Relations (3.2) can be written in the form 

J, (0) = 0 or 2$ (0) + cp” (0) = 6 

(3.4) 

(3.5) 

(3.6) 

If the fluid has constant velocity when y = 00, then Eqs. (3.4) become 

2 (v + v &+)“I + cpcp” = - 4v&‘, 2w + z (rp$)’ = 0 (3.7) 

From (3.4) with (3.5) and the first condition of (3.6) taken into account, we see that 
0s 0, i.e. when w f 0 a solution of (3.4) is possible, provided that the conditions 
(3.5) and the second condition of (3.6) hold. 

4, Let us consider the problem of a totally submerged flow of fluid with couple stresses, 
using Eqs. (2.5). In accordance with the condition of the conservation of impulse of the 
stream 

P7 
u’dy=M= con& 

--oo 
we must put m = ‘is and cl = 0. 

Relations (2.5) yield equations describing the submerged flow 

3 (v -j- v&“’ + @i-p’)‘= - 6v&‘, 3@” + Zqn#’ + 3&‘ip=O, P y#‘dE = M (4.1) 
---oo 
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Boundary conditions for %F will become [3] 

cp (0) = cp’ (0) = # (00) = 0 (4.2) 
By symmetry we have, for 9,. 

rp”(0) = 0 (4.3) 

and at infinity, we adopt one of the following conditions : 

rp(-I-0, w(=)+fP”(4=O (4.4) 

We note that Eqs. (4.1) with the condition (4.2) and the first condition of (4.4). coin- 
cide with the equations of motion for a submerged stream of a Newtonian viscous fluid 

(9 = O).‘If, on the other hand, the conditions (4.2) and (4.3) together with the second 
condition af (4.4) are taken , then the solution of the problem on the submerged stream 

with couple stresses leads to the process of integrating (4.1). 
The author thanks D. D. Ivlev and A. T. Listrov for the formulation of the problem and 

for the guidance during the course of work. 
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The equilibrium figures of a homogeneous right cylinder kept together by surface tension 
forces are considered. As we know, the only equilibrium cylindrical figure in the absence 
of rotation is a right circular cylinder (this shape corresponds to minimal surface energy). 
Such a cylinder remains an equilibrium figure with rotation about the axis of symmetry 
of the normal cross section. However, as will be shown below, new equilibrium figures in 
the form of right cylinders with #II th order (n = 2,3, .,.)-axes of symmetry arise for certain 


